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A new method, called the method of analytic angles, is developed for the solution 
of the transport equation (Boltzmann integro-differential equation) in slab geometry. 

The essence of the method is the discretization of the spatial variable accompanied 
by an analytic solution for the resulting difference equation with respect to the angular 
variable. 

This contrasts to other procedures, such as to the spherical harmonic, Wick- 
Chandrasekhar and Carlson’s &method, which are restricted to a finite number of 
values of the angular variable. 

Two examples have been worked out. One is the phonon transport in solids with 
randomly distributed scattering centers. Here the numerical solution agrees very well 
with the asymptotic analytical solutions. 

The other example, a neutron transport problem, allows comparison with the S,- 
method, and indicates the excellence of the solution. 

I. INTRODUCTION 

Let us consider a very large number of particles (e.g., neutrons, phonons, 
photons, etc.) in a homogeneous medium characterized by the following properties: 
it can scatter, absorb, and create particles. If, in addition the boundaries of the 

* This research was partially sponsored by the Air Force Office of Scientific Research, Office 
of Aerospace Research, United States Air Force, under grant number AFOSR-69-1745. 
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medium are planes parallel to the (JJ, z) coordinate plane, then the density distri- 
bution of particles will only depend on the x coordinate due to the translational 
symmetry in the (y, z) plane. 

The momentum or velocity distribution of the particles will also be independent 
of the (azimuthal) angle between the projection of the momentum or velocity 
upon the (v, z)-plane and y-axis. 

Consequently, the distribution function of the particles, i.e., the density of 
particles at the point x with momentum p may be written as $(x,p, p). Here 

p = cos(p, 2). 

As is well-known, in thermodynamic equilibrium the distribution function is a 
Bose- or Fermi-function, depending on the spin of the particles [l]. It is independent 
of the coordinate x, but depends on the energy B, hence, on the momentum through 
the dispersion relation E = e(p). It depends, furthermore, on the temperature T, 
chemical potential EF, the drift velocity vD , and the total angular momentum J 
of the system of particles. 

We are interested in nonequilibrium steady state situations, created by the 
imposition of certain boundary conditions on $(x,p, p). For instance, a certain 
influx of particles through a boundary may be given, or the temperature at the 
boundaries may be specified. 

The distribution function in these cases may be obtained as the solution of the 
Boltzmann transport equation. 

Even with many simplifications the transport equation can rarely be solved 
analytically; consequently, one must rely upon approximate methods leading to a 
numerical solution. 

Several methods have been developed and tested, all using finite difference 
schemes. Such methods are, e.g., the spherical harmonic approximations (Wick- 
Chandrasekhar-method 121) and the S,-method (Carlson [3]). 

In this paper we present a new method of solving the non-equilibrium steady 
state transport problem in the slab geometry with isotropic elastic energy dependent 
scattering of particles on randomly positioned scatterers. 

We include the case, when the number of particles is not conserved in the 
collisions,l such as one has in the neutron multiplication in fission, and we also 
include a source or sink term in the transport equation, such as one has in the 
case of spontaneous fission, or absorption of neutrons. 

The transport equation is transformed into a finite difference equation by 
discretizing the spatial variable x. The dependence on the angular variable p is 
treated analytically. 

1 In this case the energy of the particles is not conserved in the collisions either; hence, strictly 
speaking, the collision is not elastic. We assume, that each emerging particle has the same energy 
as the incident particle. 
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Attention is called to the fact that the solution presented here does not linearize 
the transport equation with respect to the temperature gradient. Hence, arbitrarily 
large derivations from the equilibrium are encompassed by this treatment. 

Our method is compared in a specific example with the &-method to demonstrate 
the advantages of the former. The &-method cannot be easily extended to the case 
of directional sources, such as the ones encountered in Section VI. There, the 
phonon sources S (fa, p) describe the emission of phonons with different intensi- 
ties in different directions. 

Note that due to the discretization of the angular variable, the S,-method yields 
only a linear approximation to the distribution function (angular flux) between 
discretization points of the angle. In contrast to this, the method of analytic angles 
does not use angular discretization, and gives therefore the analytic dependence 
of the distribution function on the angle. The reader will also note, that the spherical 
harmonic approximation is not well suited to the boundary conditions used in the 
phonon transport problem treated in a later section. These boundary conditions 
are easily handled in the method presented here. Furthermore, the method of 
analytic angles can be extended to include spherical and cylindrical geometries.2 

II. FORMULATION OF THE PROBLEM 

The steady state (time independent) transport equation in plane slab geometry 
with isotropic, elastic scattering in the laboratory system may be reduced to 

Since in this paper we are concerned with the mathematical problem of the 
solution of the transport equation, we do not elaborate on the physical significance 
of the different terms. It suffices to remark, that Z(x) is the total scattering cross 
section, c(x) is the multiplication factor (proportional to the net number of particles 
produced in one scattering event). The real number X is introduced for mathematical 
convenience. In the homogeneous problem, defined by S(x, CL) = 0, h represents 
the eigenvalue. As is well-known, the inhomogeneous problem has only solutions 
if X is not an eigenvalue. 5(x, p) represents the production or absorption of particles 
by sources or sinks in the bulk of the medium or at the boundary planes. 

Because the scattering is elastic, p does not occur in Eq. (11.1) as a variable, 
with respect to which +(x,p, CL) is differentiated or integrated. Thus p may be 
treated as a parameter, and will not be denoted explicitly in the sequel. 

In general, the functions L’(x), c(x), S(x, CL), all depend parametrically on p. 
Consequently, #(x, p) will also depend on p. 

2 Work in this direction is being carried out at the Institute for Reactor Technology, Swiss 
Federal Institute of Technology by Hag, Halin and Mennig (private communication). 
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We have to keep in mind, that there is an equation of the type (11.1) for every 
group of particles, whose momentum has a modulus in the range (p, p + dp). 

Discretization of Eq. (11.1) is achieved by assuming that the value of I,@-~,~) 
at a space point xi-1/2 can be replaced by its average value $(I& + &-J in the 
interval (xi , x~-~).” Thus Eq. (11.1) becomes 

p(yG - &-A + 4#i + &-J = Vh(Qi + Qi-J + -Up), for i = I,..., n, (II.3 

where we define 

and 
xi(Pl = S(Xi--1/2 3 PXXi - &-A for i = l,..., n. 

The quantities Qi will be called the fluxes. 
Defining tii+ and #i- by 

9h’b-d = 1cliw, for p > 0, 

A-6-4 = M-p), for p > 0, 
and Xi+ and Xi- by 

&‘W = &W, for pc>O 

xi-(P) = xi(-r.l)~ for p > 0 

(11.3) 

(11.5) 

and solving Eq. (11.2) for I,$+ and #;r results in the following set of two coupled 
integro-difference equations for p > 0: 

#i+(p) = qi&) C-&) + (p + 4-‘[Wi(@i + @i-d + xi+&)], for i = I,..., n, 

(11.6) 

$&.-l(p) = Q(p) $i&> + (p + ai)-‘[Api(@i + @i--d + x<(p)], for i = I,..., n, 
(11.7) 

where 
?li(pJ = (II - %)I(cL + 4 - (11.8) 

The boundary conditions, including the cases mentioned in the introduction, 
can be expressed in the form, 

A+(P) = Ye&- + y12 , for ru > 0, (11.9) 

3 Once the solution has been obtained, one has to verify, that this assumption is justified. This 
will be the case, if the intervals are chosen so small, that, 1 & - +i-1 1 < ) 1 #i + &- 1 or fix) 
is a linear function of x. 
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and 
sktd = Y~~~~+(P~ + yz2, for P > 0. (II. 10) 

The quantities ylk will be regarded as constants. It is possible to generalize to 
the case, where the yik are functions of p; however, the analytic integrations of 
Section IV have to be replaced by numerical integrations. 

III. EVALUATION OF &*(p) 

Equations (11.6), (11.7), (11.9), and (11.10) constitute a set of 2n + 2 linear 
integro-difference equations in the 2n + 2 unknown functions &,*(p),..., t,&*(p). 
In order to determine &+(p), one substitutes successively &+(,u) for j = 1,2,..., i - 1 
into Eq. (11.6) and eliminates #j’_,(p) at each step by use of the previous substitution. 
The result is 

for i = l,..., n, 
(III. 1) 

4l.i = fi %W, for I < i, with &+l,i = 1, and i = I,..., II. (111.2) 
v=l 

Note that 51,i are functions of y; for typographical simplicity this will not be 
explicitly shown in the sequel. Similarly, to find Q!Q- one substitutes successively &- 
for j = n, n - l,..., i + 1 into Eq. (11.7). This yields 

for i = O,..., n - 1. 

Evaluating Eq. (111.1) for i = 12 and Eq. (111.3) for i = 0 gives, 

$4%+(P) - &;.n~oftP> = h+w> 
and 

where 

and (111.5) 

(111.3) 

(111.4) 
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The boundary conditions (II.9) and (II.10) are used now to eliminate $n+ 
and t/,,- from (111.4). This enables one to express Z/Q,+ and &- entirely in terms 
of the fluxes @pi and the functions X+(p) and X-(p): 

&+&) = YllW + Yzlel;.lzh+ + Y22eLn) + Yl2 

1 - YllY2lGz 
, (111.6) 

and 

&-&)= Y21Wf + Yllel.nh- + Yl2Sl.n) + Y22 

1 - w21e,n 
(111.7) 

When these expressions are substituted back into Eqs. (111.1) and (111.3) the results 
can be written in the form 

where the new symbols are defined by 

g&) = Yllel.i(elJ-1 + YPlkz~l+l.n) + 4.lelfl.i 

(1 - wJ&,& + 4 XT- ' 

K,o = Y21&+1,n(&+m + Yllel.nel.l-1) + L.iei+l.l-1 

(1 - Y11Y2&JCU + 4 P+% ' 

(111.9) 

+ x,-o ~llel;.iel.l-l 1 + Gi+Q 
1 - 7h~21e~,n 

(III. 10) 

+ xl+cu) ~21ei+l,nel+l.n 

1 - ~ll~21e~,n I 
+ G-W 

t&Z = ! ;? for I < i 
, for I > i 

(III. 11) 
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and 
G,+&) = iuYllYz251.n + YlZ) 

z 
1 - YllY21~;,72 ’ 

G.-G) = is+1.nhzYz151.n + YZJ 
* 

1 - Y11Y&,n * 

(III. 12) 

The symbol Sisj is the Kronecker delta. 

Equations (III.8) are analytical expressions for $$* written entirely in terms 
of p and the unknown fluxes C& . As will be seen presently, simple linear equations 
can be formulated for the fluxes Gr . Thereby, the problem of the calculation 
of z,Q is reduced to the solution of a set of linear equations for Qd followed by 
a substitution of the di, into the equation (111.8) which expresses z+@ in terms of 
the fluxes Qi . In order to determine 63, at each point xi , we write 

@i = J”’ #&I do = f: [ICTf+O + ~~-01 d& for i = O,..., II. (111.13) 
-1 

Substitution of &* from Eqs. (111.8) into (111.13) leads to a set of simultaneous 
linear algebraic equations for Qri which can be written in concise form as 

for i = 0 ,..., n. (III. 14) 

The matrix elements occurring in this equation are 

M8.Z = @l - hz,z> Pz+1PTz+1Q + JL+M 

+ (1 - So,z> Bz[FitzcU) + ~d&l~ dp, for i, 1 = 0 ,..., n, (111.15) 

and the inhomogeneous terms are 

Z, = I 1 [Zi+O + Zi-01 dp, for i = O,..., n. (111.16) 

The solutions of these equations are 

with 

@Z = i Gz.tZi for I = O,..., n, 
i-0 

Gz.3 = (I- AM),:, 

(III. 17) 

(111.18) 

where I is the (n + 1) x (n + 1) unit matrix, and M is the matrix with 
elements M,,, . 
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Equations (III.8), together with Eq. (111.17), represent the complete solution of 
the transport Eq. (II. 1) with the boundary conditions included. These equations 
give the intregrated flux Q1 as well as the distribution function (angular flux)Yi*(p). 

In summary, then, the numerical solution of the transport equation in slab 
geometry is reduced to a set of quadratures, followed by the solution of a set of 
linear algebraic equations, and a number of substitutions. The next sections will 
deal with these operations in detail. 

IV. EVALUATION OF THE MATRIX ELEMENTS Mi,z 
AND OF THE INHOMOGENEOUS TERMS Zi 

So far no approximations have been introduced except for choosing discrete 
values of the spatial coordinate x. The determination of Mist and Zi is now reduced 
to the evaluation of integrals involving only rational functions of p, the cosine of 
the angular coordinate. 

While it is always possible to perform the integrations numerically, we notice 
that they can be done analytically, thereby eliminating some of the computational 
inaccuracies. 

Analytical integration becomes easy, if oli are chosen to be independent of i, i.e., 

ai = a! = const, for i = l,..., n. (IV. 1) 

This condition can be satisfied to any degree of accuracy by a suitable choice 
of the intervals Bxi = xi - xiel (see Eq. 11.3). 

Letting 

7 = (tL - a>/@ + 4 (IV.2) 
one has from (111.2) 

‘tZ.i(P) = 17”+1-z, for 1 < i, and i = l,..., n. (IV.3) 

Using (IV.3) and changing the integration variable to 7, Eqs. (III. 15) and (111.16) 
written out in detail become, 

w.z = s y, w - kz) Pz+lbwi+’ + n11f21r12nfi-z-1 + Ya1172n--i-z-1 
+ YllY2lr) -+q + (1 - &)l)(?/llTji+~-l + YIIYz#+i-d + Y1IY&-n+l-i-l 

+ Yz112n-i-zMu - YIIYz1$2n)(l - 41 
+ I(1 - h2.z) Pz,l(LJ~i-l-z + ~zd-3 
+ (1 - So,,) ,Ws.t~i-z + L.irtE-l-“WU - $I&, for i, I = 0 ,..., n, 

(IV.4) 
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and with X&r)) = X(,I&)), as defined in Eq. (11.3), 

In these expressions, the upper limit of the integration is given by 

u = (1 - a)/(1 + a). (IV.6) 

We shall treat the special case when X, is independent of q. This case is the most 
important for reactor applications. Physically it means that the sources are non- 
directional, i.e., S(++, p) does not depend on the angular variable ~1. (See 
(II. 3), last Equation). It should be pointed out, that the independence of X, of 7 is 
not essential for the following analytic integration. The method can be used equally 
well in the more general case, e.g. by using a series expansion of X, in powers of p. 
Section VI gives an example for directional sources. 

The integrations in the above expressions are still difficult to carry out unless 
either yll = yzl = 1 and y 12 = yz2 = 0, or y11y21 = 0. Fortunately, these condi- 
tions comprise the most important applications of the theory to reactors, i.e., 

(a) yll = ylz = yzl = yzz = 0: unsymmetric finite system, 
(b) yll = 1, y12 = yn = yz2 = 0: symmetric finite system, 
(c) y12 = 1, yll = yzl = yz2 = 0: shielding problem with 

isotropic incident flux, 
(d) yll = yzl = 1, ylz = yz2 = 0: cell problem. 

The first three cases can be treated together by setting ylly21 = 0 in Eqs. (IV.4) 
and (IVS), while the fourth case has to be treated separately. Hence, the four 
cases fall into two categories, which will be discussed in the sequel. 

A. Matrix Elements and Inhomogeneous Terms in the Cases a, b, and c 

Substitution of y11y21 = 0 into Eqs. (IV.4) and (IV.5) leads to 

J&z = (1 - %,z> ~z+~(~~~~z,i+z + ~231.2n-i-z-1 + L.zJ’,,i-I-Z + ~z,i~,,z-$1 

+ (1 - 6Lz) Pz(Yll~l,i+z-1 + Y21~1,2?t-i-z + &,ZPl.i-z + ez-l.i~l.Z-1-A 

(IV.7) 
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zi= fX(y P I 11 l,Z+e'-1 + Y21pl,29z-i-Z + Bi,lpl.i-L + eC-~,ip~.L-l-i> 
Z=l 

+ 2&d%i + Y22P2.n-A 
where 

Pj,y = S” 7)‘(1 - q)-’ dq, for j = 0, 1,2. (IV.8) 
-1 

The integrals PI,” and P,,, may be calculated recursively from the standard 
integrals PO,, , Pl,O , and P,,, by the use of the relations 

Pj.v = Pj,v-1 - pj-l,v-l Y for j=l,2, and v = 1, 2 ,..., n. (IV.9) 

B. Matrix Elements and the Inhomogeneous Terms in the Case d 

Setting yll = yzl = 1 and y 12 = yz2 = 0 in (IV.4) and (IV.5), one obtains 

Mi,z = (1 - ~,,z> Bz+I(&+I + Qi-z + L,zP~,i-z-1 + %iJ-‘~r-z~ 
+ (1 - &,z) ,h@i+z-1 + Qi-Z+I + W’IA-z + L,iPl,--i+z-11, (IV.10) 

and 

2, = i: XzU&+z, + Qi-z+l + %zPl.i--E + L,iP~.z--l-J. 
14 

Here, R, and QV are defined by the following relations: 

R, = j-U (y + ,fn-l-“)(I - rl - +” + 7fn+3-1 dy 
-1 

cos 
I 
y- (2v + w 
2 n 1 

* rrl 
s1n5z 

R2n-v-1 = Rv, 

arctan ( 1 5-I - tan rz , 01 1 

for v = O,..., n - 1 

for v = O,..., n - 

(IV. 1 

1, 

1) 

Qv = /yl (q2+l-" + 7 2”-“)(1 - 77 - q2” + ~~~f3-l d7, = Pvml - Pl,Y--l, 
for v = I,..., n, (IV. 12) 

and 
Q-v,, = Qv for v = l,..., n. 

V. NEUTRON TRANSPORT. COMPARISON WITH THE ~~~~~~~~~ 

As a first example we apply the theory outlined in the first four sections to the 
transport equation of neutrons in slab geometry. 
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Simultaneously, we solve the same problem by means of the well-known 
S,-method [3]. This was done using the DTF-IV code [4]. This allows comparison 
of the two methods with respect to their accuracy and with regard to the time 
needed for computation. 

For the sake of a meaningful comparison of the method of analytic angles with 
other methods, such as the spherical harmonic method, the Wick-Chandrasekhar 
method, or the S,-method of Carlson, the following remarks are in order. 

In the last-mentioned methods, the angular variable p = cos a is discretized 
in addition to the coordinate x. In these methods the distribution function is not 
obtained as an analytic function of I*, as in our case, but for a discrete set of 
values pi (i = l,..., N). Hence, only for N = 00 would these methods yield the 
same amount of information as ours-the number n of mesh points used for the 
variable x being equal. Since for N = co these methods would require an infinite 
computation time, this comparison would clearly be unfair. We compare the 
&-method and the method of analytic angles using the same number n of spatial 
mesh points, varying the number N of angular mesh points in the former. 

The methods which utilize angular discretization first invert an N x N band 
matrix, generated by the angular discretization, and then solve the spatially 
discretized equation in n points through an iterative procedure which expresses 
Y(xi , PJ linearly in terms of Y((x, , pj). 

One should note that due to the nature of the N boundary conditions 
(see (11.9) and (11.10)) an N x N dense matrix equation has to be solved to find 
the distribution Y(x, , pj) at the boundary for all pj . In contrast to this, the present 
method requires the solution of an one n x n dense matrix equation. 

It follows from this that the method of analytic angles is more suitable than the 
&-method if the angular variation of the distribution function is very pronounced. 

Let us turn now to the neutron transport problem. We consider a homogeneous 
critical slab; consequently, the inhomogeneous term in Eq. (11.1) is absent 

X(x, p) = 0. (V-1) 

Furthermore, the scattering cross-section is taken to be isotropic in the laboratory 
system as well as independent of x, hence, 

Z(x) = 22. (V.2) 

We formulate the transport equation for a monoenergetic group of neutrons; 
consequently the distribution function Y(x, p) refers to this group of neutrons only. 

The equation to be solved is now 

(V-3) 



40 ERDijS, HALEY, MARTI, MENNIG 

Note that the solutions of this equation will depend on Z and the slab thickness 
2a only in the combination 2a.Z. 

The neutron multiplication factor AC is independent of x due to the homogeneity 
of the medium. Its value is yet unknown, and will be found as the eigenvalue of 
the equation for the fluxes. 

The neutron flux Q(x) will be calculated at the point x = 0 (center of the slab) 
as well as at the boundary x = a. The neutron flux is defined by the formula 

(V-4) 

Noting that c is included in the matrix elements M,,r, Eq. (111.14) in the 
homogeneous case becomes 

The solution of these equations will yield the flux 

@(O) = @n,2 and @(a) = Q. = CD,. 

First, the eigenvalue AC of (V.5) was determined numerically using an iterative 
procedure. This quantity represents the mean number of secondary neutrons per 
collision, which will make the slab critical. 

Table I gives CA (smallest eigenvalue) as obtained with different numbers n of 
mesh points (discretization intervals) used. 

TABLE I 

Eigenvalue hc and Ratio of Flux at the Boundary to that at the Center of the Slab for Eq. (V.3) 

Method of Analytic Angles (this work) Bennet” 

n 2 10 50 150 
AC I.654 1.6169 1.61544 1.615386 1.615379 

@ww) 0.5705 0.5521 0.5554 0.55553 

D For 2aZ = 1.0, the results are obtained for various mesh sizes n. For comparison, the result 
of Bennet is also given. 

* See [51. 

The computing time for the complete solution of the problem [i.e. to find the 
distribution function (angular fluxes) and the integrated fluxes] on a CDC-1604 
computer was found to be given by 

t N 0.04 II set for 2 < n < 20, 
t e 0.0013 rz2 set for 50 < n < 150. 



SOLUTION OF THE TRANSPORT EQUATION 41 

TABLE II 

Comparison of the Results Obtained by the &-Method and the Method Described Here” 

N 2 

@w/@(0) 0.8184 

&-Method DTF-IV Code” Present 
Method 

4 6 12 16 (S,t 

0.7492 0.7251 0.6900 0.6791 0.652 

a The parameter 2u.Z = 0.5. 
b See 141. 

For n = 150 the calculations were also performed by the &-method, using the 
same computer and the DTF-IV code. It was found that for N > 6 the computing 
time for the &-method exceeds the computing time for the method of analytic 
angles, and increases rapidly with N. 

Table II and Fig. 1 will make it clear, what values of N are needed in the S,- 
method to achieve an accuracy comparable to that of the method of analytic 
angles. 

In Table II we list the ratio of the fluxes @(a) and Q(O) obtained both by the 
S,-method with different values of N as well as by the method outlined in this 
paper. The number of mesh points used was PZ = 20. 

.68 - .68 - 

.66- .66- .-------------------------------- ------. .-------------------------------- ------. 

.64 - .64 - 

.62 - .62 - 

.60""' ” ’ “1 
2 4 6 0 IO 12 14 16 18 20 22 

N- 

FIG. 1. Ratio of the fluxes @(a) at the boundary and Q(O) at the center of the slab vs. the 
parameter N of the S-method. The dashed straight line represents the result obtained by the 
method of analytic angles. 
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In this table, the method of analytic angles is denoted with the symbol S, , 
to emphasize the fact that the number of mesh points N of the angular variable, 
which characterizes the S,-method, is infinite. 

In Fig. 1. the values listed in Table II are plotted, to indicate the rather uniform 
convergence of the flux ratios obtained by the S,-method towards our value. 
Figure 1 shows that a large number N would be needed to obtain a good approxi- 
mation to our value. 

The high accuracy obtained, as well as the short computing time used in the 
method here described, are encouraging. As a further demonstration of the 
power of the method, the solution of a phonon transport problem is developed. 

VI. APPLICATION TO THE PROBLEM OF ENERGY TRANSPORT 
BY PHONONS IN A SOLID 

A. Exposition of the problem and discretization of the transport equation 

The problem of heat (energy) conduction through an electrically insulating 
crystal at low temperatures leads to the formulation of the Boltzmann transport 
equation for quantized elastic waves known as phonons. In Ref. [6] the authors 
formulate the transport equation for the phonon distribution function in a plane 
slab of thickness 2a with point scattering of the phonons. The two boundary 
planes of the slab are at temperatures T1 and T, , respectively (see Fig. 2). This 
equation is formulated here for the changefl of the distribution function due to 
the scattering-the distribution functionfO in the absence of scattering being the 
Bose distribution. The equation for f’(k, x, p) is 

P afl(;xxy PI + L’(k)fl(k, x, /J) = ; Z(k) [[l;lfl(k, x, P’) d$ - C’S(P)] 3 (VI.1) 

with the boundary conditions 

fl(k,a,p)=O for -1 <p<O and fl(k, -a, p) = 0 for 0 < p < 1. 
(VI.2) 

Here Z(k) CC k4 is the wave number dependent total cross section of all 
scatterers in a unit volume for Rayleigh scattering of phonons, k is the modulus of 
the vector k phonon wave (which plays the role of the particle momentum) and t.~ is 
the cosine of the angle 8 between k and the x axis. Note that in this example of the 
transport problem, Z(k) does not depend on x, and furthermore AC(X) = 1. The 
function S@) is defined by 

(v1.3) 
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FIG. 2. Boundary conditions for the phonon transport problem. Two infinite planes acting 
as thermal reservoirs at temperatures TI and Ta (TI > Ta emit black-body radiation phonons 
into a slab of thickness 20. Phonons incident on the wall from within the slab are fully absorbed. 
Phonons are elastically scattered in the slab. k = wave vector of a phonon. 

and 

co = fO(G) - fO(Ts), 

independent of x and 1-1. Here, 

(~1.4) 

fO(T) = [exp(tic,k;%/T) - 11-l 071.5) 

is the Bose distribution function, with fi = Plan&s constant = 1.05 x 1O-27 erg set, 
kB = Boltzmann’s constant = 1.38 x lo-la erg/OK and c, = velocity of sound 
in the material = lo5 cm set-I. As in the previous sections, the wave number k 
occurs only as a parameter in the coefficient of the integrodifferential equation 
for fl. Hence in the sequel this parameter is omitted, keeping in mind that the 
final results depend on k. 

In accordance with Section II., Eq. (VII) is discretized in X; however, for 
convenience in storing subscripted variables in a computer array, we choose the 
smallest subscript to be 1 instead of 0. Settingf& , II) = j&) the result is 

for i = 2 ,..., n. (VI.6) 

The discretization parameter is 

Ax = xi - xi-1 = 2&z - 1) for i = 2,..., n, (VI.7) 

and at the boundaries 

xl = -a, x, = a. 
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We use the notation 

@i = s’ fi’W dp, -1 

(VI.8) 

(VI.9) 

and 7) is defined in Eq. (IV.2). 
With the definitions 

~;I’(!4 = .A%4 for p > 0, 
and (VI. 10) 

h-(P) = A!- 4 for EL. > 0, 

and using Eq. (VI.3), Eq. (VIA) can be written as the following set of coupled 
equations: 

fx/4 = qfx4 + f --& Pi + @i-l - 2c01 for p > 0, i = 2 ,..., II, 

and (VI.11) 

f&4 = qfzf-4 + ; -& [@pi + @i-l -I 2c01 for p > 0, i = 2 ,..., n. 

Equations (VI.1 1) constitute a set of 2(n - 1) equations in 2n unknowns 
fi+ ,..., fn+ and fi- ,..., &-. The remaining two unknowns are determined by the 
boundary conditions Eq. (VI.2), which by virtue of Eq. (VI.10) now read: 

fl+w = 0, for O<p<l 
and (VI.12) 

fn-c/-J> = 0, for O<p<l. 

Following the procedure outlined in Section III, one finds after making use of 
Eq. (VI.12) 

h’(p) = ; -& z 7f-y@‘l + t&+1 - 2CO] for p>O,i=2 ,..., n, 

and (V1.13) 

L-(p) = k * yg: 7p-i-z[@n-r + @n+l-z + 2C*] for p > 0, i = l,..., n - 1. 

In order to determine the fluxes Qi at each point Xi, we substitute the expressions 
Eq. (VI.13) into Eq. (VI.9), which by virtue of (VI.10) now reads 

@i = j-’ KL’W t-h-01 4 for i = l,..., n. (VI.14) 
0 
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The integrations over p may be carried out analytically (as shown in Section III, 
this is always the case) yielding 

[ 

i-l n-i 

- 
aCo (1 - si,l) C Pi-2 - (1 - si,n> C Pn+l-i-l 

1=1 1=1 1 9 for i = l,..., n. 

(VI.15) 

Equations (VI. 15) form a linear algebraic system which can be written in a concise 
matrix form corresponding to Eq. (111.14) as follows: 

for i = l,..., n. (VI.16) 

The matrix elements in (VI.16) are 

Mi.I = 5 [Cl - sl.n)(~i.I+lPd--l + el.ipl+l-i) 

+ (1 - ~Llm,~pi+l-L + b--l.iPdl~ for i, 1 = l,..., n, (VI.17) 

and the inhomogeneous terms read: 

Zi = Cd0 i (Bl,iPl+1-i - Bi,t+lPi--l) = aC” F’Pz 3 for i = l,..., n. (VI.18) 
14 I=1 

Here Bi,r is defined in Eq. (111.11) and P1 z PI,,-, , as defined in Eq. (IV.@. The 
quantities PI satisfy the recursion relations 

Pl= l-1 --!-- [(-l)“-l - (=)“-‘I + Plwl, for 1 = 2 ,..., n, (VI.19) 

with 
PI = ln(1 + I/LX). 

B. Reduction of the Set of Equations and Their Formal Solution 

Note that the dimension of the matrix which determines the fluxes is equal to n, 
the number of discretization points. Because of round off errors and a matrix 
inversion time proportional to n3 for Gaussian elimination (we used this method 
in tandem with an iterative improvement), it was found practical to limit the 
dimension of the matrix to n = 23. 
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However in the region of impurity concentration, where 10-l < 2a < 10, 
(and therefore 01 N 1/(2n - 2)), the functionfl(k, x, p) varied rapidly with x and 
it was necessary to use 46 discretization points to resolve fil(p) accurately for 
almost all values of x and p. Only in a small angular interval around p = 0 
near x = &a, does af’/ax vary so rapidly that 46 points were not sufficient to 
obtain accurate values of the function f’. 

The influence of the number of discretization points IZ on the computational 
accuracy of the functionfi-(p) can be seen in Fig. 3. 

In order to carry out the actual computer calculation for all values of the 
parameter k, it was found necessary to perform several more analytical 
manipulations. 

Considerable computer time saving was achieved by the reduction of the order 
of the matrices involved by a factor of two. (In the Gaussian elimination technique 
the saving is a factor of eight.) This reduction is accomplished by choosing n even 
and noting the following properties of Eqs. (VI.17) and (VI.18): 

Mn+l-i.n+l-z = Mi,z , 
for i = l,..., n, 

I = l,..., n, 
(VI.20) 

FIG. 3. Influence of the number n of discretization points on the computational accuracy. 
The function fc- (p = 0.0087) (phonon number) is plotted as a function of position (xi) for 
2~22 = 1. The phonons move at the angle 90.5” with respect to the x axis. 

For larger numbers n the function smooths out, except very near to x = 0.5. 
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and 
Zn+l-i = -Zi 3 for i = l,..., n. 

Introduction of the new subscripts j = n + 1 - i and k = n + 
the matrix equation (VI.16) and using (VI.20) and (VI.21) yields 

sl (6j.i - Mj,p) @n+l-i = -Zj , for j = l,..., n. 

(VI.21) 

1 - I into 

(VI.22) 

Comparison of Eq. (VI.22) with Eq. (VI.16) shows that the following must be true: 

cDn+l-i = -@i ) for i = l,..., Iz. (VI.23) 

Hence, half the number of the unknown fluxes Qt may be diposed of. 
The original set of 12 equations (VI.16) can now be reduced to n/2 equations 

of the form 
nl2 
c R& = Zi , for i = l,..., n/2, (VI.24) 
14 

where 

&,z = 6,~ - M2.z -t Mi,n+l-g ; 
i= 1 ,..., n/2 

for I = l,..., n/2 (VI.25) 

We conclude this section by writing out explicitly the elements of the matrix Ri,j . 
These are needed in the subsequent section. 

To simplify the notation we define 

qz = [(- l)l - (1 - 0z)Z (1 + c&Z]/, (VI.26) 

and iterate Eq. (VI.19) to give 
z-1 

PZ = 1 qi + ln(1 + l/a). 
j=l 

(vI.27) 

With the further definition 

(4 4 = ? f 4j 
j=Z 

the matrix elements Ri,z can be written as 

&,I = 1 + (1, n - 3, 
RI,, = (Z - 1, n - Z) + (Z, n - I - l), for I = 2,..., n/2, 
Ri,, = (i - 1, n - i - l), for i = 2,..., n/2, 
R1,l = 1 + (1, n - 2Z+ 1) + (1, n - 24, for I = 2,..., n/2, 

(VI.28) 
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Rl,i = Ri,l =I;1 - 1, n - i - I + 1) + (I - i + 1, n - i - Z), 

for i = 2 ,..., ‘12 - 1, I = 2 ,..., n/2. (VI.29) 

Note that the logarithmic term PI = ln(1 + I/LX) cancelled out in the process 
of reducing the matrix M,,I to R,,l . Finally, the inhomogeneous terms (VI.18) 
can be written as 

n-i 

Zi = 2C” C [(l, I- 1) + &ln(l + l/a)], 
z=i 

for i = l,..., n/2. (X.30) 

At this point the problem of finding the changef&) in the phonon distribution 
function at each point Xi has been formally solved. One needs only to invert the 
matrix Ri,l in Eq. (VI.24), and apply it to the vector Zi to solve for the vector Qi 
and substitute the components back into Eq. (VI.13) to determinefil(p). 

C. Convergence Improvement 

The expressions developed in the preceding section for the matrix elements Ri,l 
cannot be used for numerical calculations for all values of the parameter (Y. The 
reason for this is that the matrix Ri,l is singular to order 01-l, hence for large values 
of 01 the numerical results are inaccurate. 

We recall that Q: is proportional to the product of the concentration and cross 
section of scattering centers [see Eq. (VI.8)]. 

Work with a computer utilizing 14 significant digits showed that the loss of 
accuracy through the singular nature of Ri,a becomes intolerable for a! > 3 x 103. 
Hence, expansions of the matrix elements RiPl and of the inhomogeneous terms Zi 
were carried out analytically in inverse powers of 01, up to order @. 

In this section these expansions are developed. For this purpose it is convenient 
to introduce the following abbreviation for an often occurring alternating sum 
of powers of integers 

TLwL(n) = 5 (-l)ij%. (VI.31) 
j=l 

The following relation is immediately verified. 

T,“(n) = T,“(n) - Ti-l(n). (VI.32) 

It is possible to write T1*(n) in terms of Tim(1),..., T,n”(n - 1). Table III gives the 
values needed. 
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TABLE III 

Values of Tim(n) = f (-l)‘j” 
.4=1 

TV”’ 
T,“‘(l) 
T,“‘(2) 
T;“(3) 

m even 

0 
42 

m(m + 1% 
m2(2m + 3)/4 1 

m odd 

-(m--i 1)/2 
-m(m + 1)/2 

-(m + 1)2(2m - 1)/4 

As may be seen from (VI.28) and (VI.29), the matrix elements Ri,r contain the 
quantities Q , which are functions of CL 

Expansion of &qj to order OC-~ gives 

&xqj = (-l>j [l -j/a + (1 + 2j2)/3a2]. (VI.33) 

Using 071.33) we write (VI.28) as 

(I, m) = Tz”(0) - Trm(l)/ar + [&%(O) + 2Tgm(2)]/3a2. 071.34) 

Referring to Table III, this expression becomes 

(- l)z{l - (I + m)/2a + [m(m + 1) + Z]/3a2}, for 
K m) = I(-l)“{(m - I + 1)/201 + [m(m + 1) - 1 + 1]/3c?}, 

m - Z even. 
for m - Z odd. 

(VI.35) 

The matrix RI,z , expanded to order l/a is singular and of rank one. Since the 
inversion of such a matrix (needed to solve (VI.24)) leads to numerical inaccuracies, 
a new set of equations is formed. The new equations are linear combinations of 
the equations (VI.24). Their matrix elements are 

K,z = R,,, 3 for Z = I,..., n/2, 

RI,, = &,z + (-0%~ , 
for i = 2,..., n/2, 

Z = 1, 2 ,..., n/2, 

(X.36) 

and their inhomogeneous terms are 

S,’ = s, , 
s,’ = si + (-l)$ , for i = 2,..., n/2. 

071.37) 

58Ib/I-4 
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With the use of Eqs. (VI.29), (VI.35), and (VI.36) we obtain 

R;,, = 1 - (n - 2)[1/2a - (n - 1)/3a2], 

R;,, = 2(-l)z-‘[1/20z - (n - 1)/301~], 

R;,l = (-l)i[2(n - i)(i - 1) - 1]/3a2, 
(VI.38) 

and finally 

R;,l = (41- 5)/3a2, 

1)/3& i = 2,..., n/2 - R;., R;,, 1, = = 4(-l)i+z(i - for 
1 

= 
2,..., n/2. 

To formulate the inhomogeneous terms we substitute (1,l - 1) from (VI.35) 
into (VI.30) and expand the logarithmic term to order IX-~. The results for I even 
and 1 odd are combined to give 

s, = co -zy(0) + [T:A(l) - 1/2~-‘(o)]/oI 
I 

- [c-'co, - 4 ~'T~-'(2)]/308/, for i = l,..., n/2. 
j=i 

From this, using Eq. (VI.31), Table III, and the fact that n - 2i is even, follows 

S, = Co{-l)‘{-1 + (n - 1)/2ar - [l - n + 2(-l)t17;-1(2)]/3~2. (VI.39) 

According to the definition (VI.37), the inhomogeneous terms are now given by 

S,’ = Co{1 - (n - 1)[1/2~~ - (n - 1)/3ar2]) 
and cvI.4Q) 

S+’ = 2C”(-1)” (n - i)(i - 1)/3cr2 for i = 2,..., n/2. 

In terms of (VI.38) and (VI.40), the new set of equations, equivalent to (VI.24), is 

for i = l,..., n/2. (VI.41) 

At this point we have derived expressions which are suitable for all values of LY to 
accurately solve for the fluxes oi. As pointed out in Section VI.B, substituting Qi 
into Eq. (VI.13) gives the function fl, hence a complete solution of the problem 
is obtained. A graphical representation of the solutions is shown in Fig. 4, a, b and c. 
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D. Integral Quantities Obtained from the Distribution Function 

To illustrate the use of the solution and to examplify the necessity of the expan- 
sions in inverse powers of c1 we shall describe the calculation of the x component 
of the phonon momentum density. At each point xi this quantity is defined as 

q = 9$ + f& j- kpJ= d3k, (VI.42) 

-X (cm)- I 

FIQ. 4. 

where PO is the momentum density in the absence of scattering [6]. Thus PO is 
given by 

(VI.43) 

where Co is given by (VI.4) in terms of the equilibrium distribution function fo, 
and szfi is a numerical constant. Substitution of the discretized solutions fs+ 
and fi- given by (VI.13) into (VI.42) and integration over the angular variable p 
yields 

The quantities Qm are defined as 

QI = l/h 
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-X(cmk-- 
I 

FIG. 4. Relief diagram of the contributionf’(x, 0) to the phonon distribution function through 
scattering, The function has been obtained as a solution of (VII), using a maximum of 46 discreti- 
xation points. Horizontal axes: coordinate x across slab, 0 = Q (k, 2). Parameters: tic&’ = 
7.61 x lo-’ cm “K (cf. Eq. VI.5), center temperature T,,, = 1 “K, trmperature difference across 
slab T = 1O-2 “K, phonon wave number k = 5 x lo5 cm-’ and slab thickness 2a = 1 cm. 

Figures a, b, and c show f’ for 2a Z(k) = 1000, 1.0, 0.01, respectively. 

and 

Qm = Pz,m-l = P-l/(1 - u) - t(- 1),-l - (m - 1) P,ul , for m = 2,..., II, 
(VI.45) 

where u is defined by (IV.6) 
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Initially Eq. (VI.44) was used to find the total momentum density 9 for 
all 01 by numerically integrating the second term over k and then adding P0 (VI.43) 
to it. This method yielded inaccurate results for large values of 01 (large total 
scattering cross section 2:) because in this limit B approaches zero and the integra- 
tion produces a term approaching --PO . Regarding P0 as of order unity, we needed 
to know the total momentum density for values of such that P < lo-lo. Therefore, 
the term -PO needed to be analytically extracted from the integral in Eq. (VI.44). 
This was accomplished by expanding a2Qm to order 01? for large 01. 

Specifically, using (V1.27) to rewrite (V1.45) we have 

1 
CX~Q,+~ = - aum - ma2 2 l/or) 

I 
, (VI.46) 

where qm is defined by (VI.26). After expanding all terms in (VI.46) to order (Y-~, 
and making use of Table III, we find 

a2(Qm + Qm+l) = &(-l)“+l (1 - 2(2m - 1)/3cl + [m(m - 1) + +]/Lx”}. (VI.47) 

By setting m = i - 1 and j = I + i - 1, and substituting (VI.47) into the 
momentum density integrand (VI.44), the zero-th order term (a”) multiplying Co is 
found to be 

7dsi (1 - 8,,J i (-1)” + (1 - & nc (-l)“+ dk 
m=i-1 j-i I 

Z rrmi jm k3Co dk ni1 (-1)” = ~-7~.!%i jm k3Co dk = -PO . (VI.48) 
0 W&=1 0 

The total momentum density at the point xi can now be written as 

Yi = d% * k3a2 j I 
i-l 

(1 - &,I) c KQi-t + Qi-l+d(@pl + @%+I) 
0 1=1 

n-i 

- 2C"(Q,-, + Qi-,, + (l/2) 4-lY">l - (1 - &.n) c KQn-i-z,, 
l=l 

+ Qn-i-z+zKL + %t+,) + 2C"(Q,4-t+1 + Qn--i--1+2 

+ (l/2) ~-~(-l)~-~--l+l)] dk. 
I 

(VI.49) 

This expression was used to compute the momentum density at the point xi with 
the aid of the computer programs outlined in the next section. We note, that the 
accuracy of the calculation was checked by comparing values of the momentum 
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density at different points. Since there are no sources or sinks in the slab, the 
momentum density was found to be the same at all points, i.e., gi = B for all i. 

VII. COMPUTATIONAL PROCEDURE 

In this section we outline the numerical calculations carried out on the example 
of the phonon transport problem. For brevity, we do not include a description 
of the neutron transport calculations of Section V. Computer programs may be 
obtained from the authors. 

The numerical calculations were carried out on a digital computer.4 A code 
designated as BOZMA, consisting of a main program and five subroutines, 
was written in the language FORTRAN IV [7] for the purpose of calculatingfil 
and carrying out the necessary k-space integrations for the energy and momentum 
densities. 

The integrations are performed by the Romberg algorithm [8]. The function 
to be integrated vanishes exponentially for large values of its argument. The total 
range of integration over the variable k (0 - co) is divided into regions whose 
upper limits are calculated from predetermined fractions of the integrand’s 
maximum value, which is found by a routine called peak seeker. The development 
of peak seeker was necessary because the integrand is sharply peaked. By placing 
the upper limit of one of the integration regions at the peak, the number of points 
needed in conjunction with the Romberg algorithm to satisfy certain convergence 
criteria is reduced considerably. Two types of convergence criteria are used in the 
integration. In each region of integration the column of the trapezoid sums and 
the interpolation columns of the Romberg table are checked after each iteration 
until a relative variation less than lO-‘j is achieved. Then as the integral over each 
new region is computed, its ratio to the total integral computed is required to be 
less than 1O-0. 

The set of linear equations (VI.41) is solved for the fluxes @i by three subroutines 
taken from the literature [9]. The first of these subroutines, DECOMP, is essentially 
a Gaussian elimination routine with partial pivoting. The second, SOLVE, uses 
an upper triangular matrix generated by DECOMP to solve the equations. The 
third, IMPRUV, is a relaxation algorithm, which uses as a first approximation 
in an iterative procedure the solutions obtained by the Gaussian elimination. 

The detailed results obtained by these calculations are published elsewhere. 
(See M.) 

4 Model 6400 computer made by Control Data Corporation, of the Florida State University, 
operated with the assistance of the U.S. National Science Foundation Grant GJ367. 
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For fixed values of all parameters of the problem, the phonon distribution 
function, the momentum density, the energy, and the number of particles at each 
(out of n) discretization point xi was computed. 

For a comparison of the computational times needed for this and other methods 
the reader is referred back to Section V, third paragraph. 
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